The eXperimental Robot Project

Felix Schneider Norbert Braun {felix,norbert}@xrpbot.org

EHSM 2014 2014-06-27

< ≣ >

Dingfabrik Köln Project Goals

イロト イヨト イヨト イヨト

æ

Dingfabrik Köln

- Fablab, maker-/hackerspace
- Founded 2010 in Cologne
- \sim 90 members
- Wood workshop, metal workshop
- Moved in 2013 to 450m² cellar

Introduction Theory

Other projects Hardware Dingfabrik Köln Project Goals

イロト イヨト イヨト イヨト

æ

Wood Workshop

- Professional circular saw
- Mitre saw
- 1200×600mm lasercutter
- Small, cheap 500x250x70mm CNC portal router
- Drill press
- All kind of handtools

Dingfabrik Köln Project Goals

- < ≣ →

æ

Metal Workshop

- Still in the making
- MIG, TIG, stick welding, gas axe
- Professional drill press
- Professional conventional universal mill
- TODO: sheet metal
- TODO: bandsaw
- TODO: plan table
- TODO: move lathe to the new dingfabrik

Introduction

Theory Other projects Hardware Dingfabrik Köln Project Goals

Deckel FP2

- Built in 1978
- Donated by SGL Carbon in 2013
- Completly overhauled in 2014
- 400x200x500mm
- Digital readout
- Good results

イロト イヨト イヨト イヨト

Dingfabrik Köln Project Goals

- (同) - (三)

- < ≣ →

æ

Electronics

- Small but fully featured
- Professional soldering iron, hot air
- 4-Ch 200MHz digital phosphor scope

3D printing

- Orcabot
- Prusa-Mendel

Dingfabrik Köln Project Goals

Image: Image:

Secret Underground Facility The lab in the lab

- Small 20m² room in Dingfabrik
- Project space granted for some longer time
- Home of the XRPBot team
- Fully featured electronic workbench
- Scope/pcb-making/parts

Dingfabrik Köln Project Goals

The eXperimental Robot Project

- Life-size humanoid robot
- Focus on legs (walking), arms and hands will come (much) later
- Fully free (open source, open hardware), transparent development process
- Goal: state-of-the-art software, hardware optimized for cost/manufacturability

▲ 문 ▶ | ▲ 문 ▶

Dingfabrik Köln Project Goals

글에 비율에

æ

Why humanoids?

- Wheels ideal in dedicated environment (streets), otherwise fairly limited
- Human environments made for humans, wheels are really limiting (wheelchair!)
- Service robots
- Disaster recovery
- The real reason: they are cool...

Dingfabrik Köln Project Goals

▲ 문 ▶ | ▲ 문 ▶

Other projects

- Progress on humanoids appears to be heating up
- Big company players (Boston Dynamics, Schaft) extremely secretive
- University projects more, but still not fully, open
- Exisiting robots cost ≥ 100 k€ (our goal: few k€)
- Physics-based character animation is a hot topic at SIGGRAPH (but usually not on physical hardware)

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

- ∢ ≣ ▶

Simulation: Introduction

- Simulate robot using simplified physics models
- Goal: develop controllers
- Goal: evaluate actuation requirements
- Goal: inform design choices
- Use Open Dynamics Engine (ODE, http://www.ode.org/) plus dedicated algorithms

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

Rigid Body Dynamics

How to simulate a robot?

Rigid body:

- Non-deformable (no flexing, vibration, etc.)
- Details of mass distribution condensed into 10 parameters

Next step up in realism: soft body

- Complete details of mass distribution/stiffness/etc. matter
- Infinitely many degrees of freedom
- Simulation by finite element method

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

Rigid Body Dynamics (2)

- 6 degrees of freedom:
 - Rotation (3 DoFs)
 - Translation (3 DoFs)
- 10 parameters:
 - Total mass *m* (1 parameter)
 - Center of gravity c (3 parameters)
 - Moment of inertia *I* (6 parameters)

Newton-Euler equation: link between force (T, F), velocity (w, v) and acceleration (α, a) .

$$\left(\begin{array}{c}T\\F\end{array}\right) = \left(\begin{array}{c}I&0\\0&m\mathbf{1}\end{array}\right)\left(\begin{array}{c}\alpha\\a\end{array}\right) + \left(\begin{array}{c}\omega\times I\omega\\\omega\times mv\end{array}\right)$$

イロト イヨト イヨト イヨト

æ

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

Joints

- Joints enforce constraints between rigid bodies.
- Motion respecting constraint unaffected
- Otherwise: constraint force occurs such that constaint remains fulfilled
- Actuated joint: force in active direction can be chosen

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

Joint space dynamics

- Typical physics engine: simulate all
 6 DoFs per body
- Alternative: consider only active degrees of freedom for each joint
- Question: equations of motion?

Image: A matrix and a matrix

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

Recursive Newton-Euler algorithm

Kinematic tree:

- Root body has joint to inertial (fixed) frame
- No loops

< 🗇 🕨

Recursive Newton-Euler algorithm (RNE):

inverse dynamics for kinematic trees (given joint space velocity and acceleration \dot{q} , \ddot{q} , calculate joint space forces τ) addition: allow external forces $F^{(ext)}$

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

RNE: forward pass

æ

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

RNE: local pass

use Newton-Euler equation to calculate total force on body from velocity and acceleration

イロト イヨト イヨト イヨト

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

RNE: backward pass

• $F^{(ext)}$ given

Solve

 $F_{3}^{tot} = F_{3}^{(ext)} + F_{3}$ $F_{2}^{tot} = F_{2}^{(ext)} + F_{2} - F_{3}$ $F_{1}^{tot} = F_{1}^{(ext)} + F_{1} - F_{2}$

イロン イヨン イヨン イヨン

æ

• project F_i to get joint space forces τ

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

イロト イヨト イヨト イヨト

RNE properties

- Run-time: O(n)
- Constraint forces can be calculated

Analysis shows: au is linear in \ddot{q}

$$au = M(q)\ddot{q} + C(q,\dot{q})$$

- *M*(*q*): mass matrix (symmetric, positive definite, hence invertible)
- $C(q, \dot{q})$: Coriolis terms

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

RNE properties (2)

Inverse dynamics:

$$au = M(q)\ddot{q} + C(q,\dot{q})$$

Forward dynamics:

$$\ddot{q} = M(q)^{-1}(\tau - C(q, \dot{q}))$$

Note: forward dynamics requires matrix inversion, hence $O(n^3)$. Use Articulated Rigid Body algorithm if this is a problem.

Reference: R. Featherstone: Rigid Body Dynamics Algorithms (Springer 2008)

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

< 4 A >

- ∢ ≣ ▶

æ

Trajectory tracking

Track joint space trajectory $q_{des}(t)$ ($q_{des}(t)$, $\dot{q}_{des}(t)$, $\ddot{q}_{des}(t)$ given). Control: τ . Add small PD controller to correct modeling errors.

$$\ddot{q} = \underbrace{\ddot{q}_{des}}_{feedforward} + \underbrace{k_p(q_{des}(t) - q(t)) + k_d(\dot{q}_{des}(t) - \dot{q}(t))}_{PD \ control}$$

$$\tau = M(q)\ddot{q} + C(q, \dot{q})$$

Remember: kinematic trees only!

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

-∢ ≣ ≯

Walking with magnetic boots

- Idea: turn robot into kinematic chain by considering magnetic boots
- Above algorithms apply
- Design joint space trajectories, track them

Demo #1

• Simulation with ODE

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

- < ≣ →

Simulation results

Works!

However, we have really only shown that RNE and ODEs algorithm agree.

Do we need the magnetic boots?

Demo #2

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

<ロ> <同> <同> <三> < 回> < 回> < 三>

- ∢ ≣ ▶

Contact: normal component

Contacts are (usually) non-sticky! Normal component of contact force: $F_c^{(n)} \ge 0$.

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

Contact: tangential component

- Contact is a complicated microscopic phenomenon
- Commonly used model: Coulomb friction

$$\left|F_{c}^{(t)}\right| \leq \mu F_{c}^{(n)}$$

- Rubber soles on structured ground: $\mu \sim 1$
- Limited relevance in practice

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

The center of pressure

Consider multiple contact points x_i:

Define:

$$x_{c} = \frac{\sum_{i} x_{i} F_{i}^{(n)}}{\sum_{i} F_{i}^{(n)}}$$

< ∃⇒

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

Center of pressure (2)

CoP:

$$x_c = \frac{\sum_i x_i F_i^{(n)}}{\sum_i F_i^{(n)}}$$

is weighted sum of contact points:

$$x_{c} = \sum_{i} \alpha_{i} x_{i} , \quad \alpha_{i} = \frac{F_{i}^{(n)}}{\sum_{i} F_{i}^{(n)}}$$

 $F_i^{(n)}$ implies $0 \le \alpha_i \le 1$: convex sum!

 x_c must lie inside rectangle!

- ∢ ≣ ▶

・ロト ・回ト ・ヨト

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

<ロ> <同> <同> <同> < 同> < 同>

Center of pressure (3)

Sum all contact forces into total contact force and pressure:

$$F = \sum_{i} F_{i}$$
, $T = \sum_{i} x_{i} \times F_{i}$

Let n be the normal vector and coordinate origin in the contact plane. Then:

$$x_c = \frac{n \times T}{n \cdot F}$$

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

<ロ> <同> <同> <同> < 同> < 同>

Center of pressure (4)

- "Magnetic boots" can transfer arbitrary contact forces
- Necessary conditions for real contact:
 - $F^{(n)} \ge 0$
 - x_c inside foot
- \bullet sufficient for $\mu \to \infty$
- usually sufficient in practice

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

Walking with magnetic boots revisited

・ロト ・回ト ・ヨト ・ヨト

æ

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

イロト イヨト イヨト イヨト

æ

Respecting the CoP constraint

- Cartwheel3d
- Buschmann

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

<ロ> (日) (日) (日) (日) (日)

Cartwheel 3d

- Physics-based character animation framework
- by S. Coros, P. Beaudoin and M. van de Panne
- Paper: S. Coros, P. Beaudoin and M. van de Panne.
 Generalized Biped Walking Control. SIGGRAPH 2010
- Open source (Apache 2.0)
- Originally indended for interactive authoring, not hardware control
- https://code.google.com/p/cartwheel-3d/

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

< 🗇 🕨

글 🕨 🔸 글 🕨

Cartwheel 3d biped

- 6 DoF per leg
- Foot position and rotation fully controllable
- Analytical inverse kinematics
- Kinematic singularity for fully extended leg
- originally additional DoF in upper body

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

Cartwheel 3d biped (2)

Side view

Front view

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

<ロ> <同> <同> <同> < 同> < 同>

Approach: Cartwheel 3d

- Regulate CoM velocity with simple PD controller
- Clamp virtual CoM force using CoP constraint
- $\bullet\,\Rightarrow\,\mathsf{poor}$ control over CoP trajectory, but
- use swing foot position on impact as additional control input
Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

イロト イヨト イヨト イヨト

æ

Demo: Cartwheel 3d

- Simplified version of Cartwheel 3d controller
- Clean separation of controller and physics engine
- Physics engine: ODE

Demo time

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

<ロ> <同> <同> <同> < 同> < 同>

• Works. Looks realistic.

Drawbacks:

- trying to keep CoM velocity constant wastes control effort (minor)
- lost control over swing foot positioning (needed by higher-level controller, e.g. climbing stairs, rough terrain)
- Performance on physical robot unclear

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

< 17 <

글 🕨 🔸 글 🕨

Buschmann controller

- Controller for physical robot (Lola, TU Munich)
- T. Buschmann. Simulation and Control of Biped Walking Robots. PhD thesis, TU Munich, 2010.
- No code, but reasonably complete description
- Our implementation work in progress

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

▲ 문 ▶ | ▲ 문 ▶

Linear and angular momentum

- Imagine: robot floating in space
- Linear and angular momentum conserved
- Conservation of linear momentum implies that center-of-mass trajectory cannot be influenced
- No similar result for angular momentum (can reorient!)
- Robot on ground: Total linear and angular momentum only changed through contact forces
- ... but we can control the contact forces through the legs!

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

A B > A B >

- ∢ ≣ ▶

Buschmann: approach

- Choose CoP trajectory
- assume L = const.
- Solve BVP to obtain CoM trajectory
- design rest of robot movements around CoM trajectory

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

Buschmann: demo

・ロト ・回ト ・ヨト ・ヨト

æ

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

- 4 同 ト 4 ヨ ト 4 ヨ ト

Long term prospect: optimization

- Hand-crafted controllers OK for simple walking
- approach breaks down for complicated movements
- design movements by large-scale numerical optimization
- good way to use (still) increasing computational power
- many interesting results in simulation (SIGGRAPH)
- few results on physical robots: why?

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

< 17 <

글 🕨 🔸 글 🕨

Gear Requirements

Ballpark estimates:

- Peak joint torque in order of 100 Nm
- $\bullet~$ Motor torque $\sim 1~{\rm Nm}$
- Needed reduction ${\sim}1{:}100$

Options left:

- Gearing: Harmonic Drives, Planetary Gears
- Linear actuators: Ball screws, Planetary Roller Screws

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

イロト イヨト イヨト イヨト

Harmonic Drive

Overview

Image: Harmonic Drive AG

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

Harmonic Drive

How it works

• Reduction ratio:

Number of Flexspline Teeth

Number of Flexspline Teeth - Number of Circular Spline Teeth

• E.g.
$$\frac{200}{200-202} = -\frac{1}{100}$$

• Usual ratios:
$$\frac{1}{50}$$
 - $\frac{1}{200}$

・ロト ・回ト ・ヨト

- ∢ ≣ ▶

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

Planetary Gear

Overview

- Three main parts: Sun (green), Planet (blue), Annular Gear (red)
- Multiple Stages in a single Annular Gear possible

Wikipedia, Chris 73

Wikipedia, Guam

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

Linear Actuators

Ball Screw

- works like a normal srew
- bearing balls are used to reduce friction
- no self-locking

Roller Screw

- order of magnitude more expensive
- increases contact area ->heavier load
- very shock resistent
- planetary roller screw combines planetary gear principle ->reduction

superiorballscrewrepair.com

servo-drive.com

< 4 P→

Introduction Rigid Body Dynamics Contact Controllers Gears and Actuators

< □ > < □ > < □ > < □ > < □ > .

æ

	Planetary Gear	Harmonic Drive
Speed	-	+
Efficiency	3% loss per stage	87%
Backlash	-	++
Costs	+	
Weight	-	++

TUlip Lola

TUlip

- Humanoid robot, realized at Eindhoven/Delft/Twente university
- 120cm, 15kg
- Uses *series elastic actuation* (resulting bandwidth: 5-10 Hz)
- Brushed motors (Maxon RE30, 60W)
- Planetary gears (Maxon GP32)
- Predecessor named Flame

TUlip Lola

TUlip: Kinematic concept

- 6 DoFs per leg: 3 hip, 1 knee, 2 ankle
- Hip Joint has 2 axis in 1 plane
- Third axis is in the torso
- Ankle roll axis is passive (spring)

TUlip Lola

XRP

- Humanoid robot, realized at TU Munich
- 180cm, 55kg
- 25 DoF total, 7 DoFs per leg
- Predecessor named Johnny Walker

E> < E>

< 4 P→

TUlip Lola

Lola: Actuation concept

- Brushless motors (PMSM)
- Harmonic Drives (hip joint, toe joint)
- Planetary Roller Screws used as linear actuator (knee, ankles)

TUlip Lola

Lola: Kinematic concept

- 7 DoFs per Leg
- Comparable to TUlip
- Additional toe joint
- All joints are active
- $\bullet\,$ Hip z axis is tilted against xy plane

Acrobot Theory Acrobot Hardware Control systems BLDC Back to Robots

Acrobot: Introduction

- Double pendulum
- Only middle joint is actuated
- Task: swing up from hanging down
- Famous toy system from control

< D > < D > <</p>

-≣->

Acrobot Theory Acrobot Hardware Control systems BLDC Back to Robots

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

Acrobot: Trajectory generation

- Black-box approach
- Insert:
 - Equations of motion
 - Start and goal position
 - Cost function
- out comes: feasible, locally optimal trajectory
- based on large scale, constrained, non-linear optimization
- Software: psopt (http://www.psopt.org/)
- Optimizer: ipopt (https://projects.coin-or.org/lpopt)

Acrobot Theory Acrobot Hardware Control systems BLDC Back to Robots

<ロ> <同> <同> <同> < 同> < 同>

Acrobot: Trajectory tracking

- Open-loop execution of trajectory will fail
- Feedback: complicated because underactuated system (2 DoFs, 1 control)
- Solution: linearize around nominal trajectory, use linear time-varying linear quadratic regulator (LTV-LQR)

Acrobot Theory Acrobot Hardware Control systems BLDC Back to Robots

イロン イヨン イヨン イヨン

Acrobot: references

- Details in upcoming blog post
- **Optimization-based control:** J. T. Betts: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming: SIAM, 2010
- LTV-LQR: R. Tedrake: Underactuated Robotics: Lecture series, MIT OpenCourseWare, http://ocw.mit.edu/courses/electrical-engineering-andcomputer-science/6-832-underactuated-robotics-spring-2009/video-lectures/

Acrobot Theory Acrobot Hardware Back to Robots

Acrobot Hardware (1)

XRP Felix Schneider, Norbert Braun

Acrobot Theory Acrobot Hardware Control systems BLDC Back to Robots

A B > A B >

-∢ ≣ ≯

Acrobot Hardware (2)

- Pulleys and extrusion profile purchased
- All other parts manufactured at Dingfabrik
- Complete STEP files on github

Acrobot Theory Acrobot Hardware Control systems BLDC Back to Robots

Acrobot Hardware (3)

Manufacturing

・ロト ・回ト ・ヨト ・ヨト

Acrobot Theory Acrobot Hardware Control systems BLDC Back to Robots

μC - Hardware

STM32F407

- ARM Cortex M4
- 164MHz, 1MB flash, 192kb RAM (newer models have even more)
- Huge set of peripherals
- Evaluation Board is about 15\$
- Cheaper than a the chip alone
- Very well designed, probing is a breeze

Acrobot Theory Acrobot Hardware Control systems BLDC Back to Robots

<ロ> <同> <同> <同> < 同> < 同>

Library

- LibOpenCM3 (http://libopencm3.org)
- Good support for STM32
- More lightweight than original ST Library
- usually just works, but isn't stable

Toolchain

- arm-none-eabi gcc (precompiled by ARM)
- gdb over ST-Link (JTAG/SWD)

Acrobot Theory Acrobot Hardware Control systems BLDC Back to Robots

Rotation Sensors

Austria Microsystems AS504x/AS5311

- Magnetic hall effect sensors
- absolute (AS504x) or incremental (AS5311)
- 12 bit (4096 steps/rev)
- about 10\$ each
- magnets are about 5\$
- quadrature output
- incremental ring sensor resolution: 0.0007°

Acrobot Theory Acrobot Hardware Control systems BLDC Back to Robots

Electronic Speed Controller (1)

First approach:

- simonk compatible ESC
- 40A ESC with Atmel ATMega is 20\$
- Caveat: fw is in assembly

Next approach:

- Copy known to work chinese ESC
- Own layout, own controller (STM32)
- Caveat: original layout mulitlayered. Custom board will be huge

글 🕨 🔸 글 🕨

Acrobot Theory Acrobot Hardware Control systems BLDC Back to Robots

Electronic Speed Controller (2)

Conclusion:

Decaptiate the Chinese ESC

- Cheaper than the needed FETs alone
- Benefits of the newer ARMs (highres Timers, PWM)

Next step:

- Space Vector Modulation
- Think of it like Microstepping
- Finish a integrated PCB

Acrobot Theory Acrobot Hardware Control systems BLDC Back to Robots

Motor

- Cheap 30\$ 2kW BLDC RC Motor
- Weight: \sim 500g
- Slightly overpowered but has only 270KV
- $\bullet~\rightarrow$ 849 rad/s @ max. voltage
- Torque: 3.15 Nm @ max. current (calculated)

<ロ> <同> <同> <三> < 回> < 回> < 三>

→ 三→

Acrobot Theory Acrobot Hardware Control systems BLDC Back to Robots

< 1[™] >

- < ∃ >

- Gears are expensive
- Idea: Use cheap gears from cordless screwdrivers
- Caveat: No exact, guaranteed specs
- backleash is a big uncertainty
- Solution: Motor test bed

Acrobot Theory Acrobot Hardware Control systems BLDC Back to Robots

Motor Test Bed

- Static torque (point mass in plane): M = Fr
- Inertia $I = mr^2$
- Pendulum with 1m radius and 10kg point mass

Acrobot Theory Acrobot Hardware Control systems BLDC Back to Robots

<ロ> <同> <同> <同> < 同> < 同>

Back to Robots: Design Goals

- Size: 120cm (with torso as small as needed)
- Weight: 30kg
- Dynamic Walking
- Speed comparable to a human at same leg size

Acrobot Theory Acrobot Hardware Control systems BLDC Back to Robots

_∢ ≣ ≯

Current status

- Preparatory phase: simulation, study exisiting designs
- Workshop mostly set up
- Toy project: Acrobot
- Next step: find suitable motor/gear solution
- Ready to start construction after gear question is solved

Acrobot Theory Acrobot Hardware Control systems BLDC Back to Robots

Thank you!

http://xrpbot.org

... or meet us in the hall!

イロト イヨト イヨト イヨト

æ