The eXperimental Robot Project

Felix "darthrake" Schneider Norbert Braun {felix,norbert}@xrpbot.org

31c3 2014-12-27

1 Introduction

- 2 Walking from simulation ...
 - Rigid Body Dynamics
 - Contact
 - Control strategy
 - Demo
- 3 ... to reality
 - BLDC motors
 - Sensors
 - Gears and Actuators
 - Motor Testbed
 - Other Projects

1 = 990

- < ≣ → -

The eXperimental Robot Project

- Life-size humanoid robot
- Focus on legs (walking), arms and hands will come (much) later
- Fully free (open source, open hardware), transparent development process
- Goal: state-of-the-art software, hardware optimized for cost/manufacturability

∃ ► ★ Ξ ► Ξ = • • • • •

Why humanoids?

- Wheels ideal in dedicated environment (streets), otherwise fairly limited
- Human environments made for humans, wheels are really limiting (wheelchair!)

. < E | E | E | < Ø Q (?)</p>

- Service robots
- Disaster recovery
- The real reason: they are cool...

- Progress on humanoids appears to be heating up
- Big company players (Boston Dynamics, Schaft Google) extremely secretive
- University projects more, but still not fully, open
- Exisiting robots cost ≥ 100 k€ (our goal: few k€)
- Physics-based character animation is a hot topic at SIGGRAPH (but usually not on physical hardware)

토▶ ▲토▶ 토|티 ���@

Rigid Body Dynamics Contact Control strategy Demo

Simulation: Introduction

- Simulate robot using simplified physics models
- Goal: develop controllers
- Goal: evaluate actuation requirements
- Goal: inform design choices
- Use dedicated dynamics toolkit plus external engine (Open Dynamics Engine: ODE, http://www.ode.org/) for verification

Rigid Body Dynamics Contact Control strategy Demo

Rigid Body Dynamics

How to simulate a robot?

Rigid body:

- Non-deformable (no flexing, vibration, etc.)
- Details of mass distribution condensed into 10 parameters
- 6 degrees of freedom

Next step up in realism: soft body

- Complete details of mass distribution/stiffness/etc. matter
- Infinitely many degrees of freedom
- Simulation by finite element method

- < ∃ >

= 200

Rigid Body Dynamics Contact Control strategy Demo

Robot model

Rigid Body Dynamics Contact Control strategy Demo

Why is walking a hard problem?

Industrial Robot vs. Biped

TU Munich < □ ▶ < 큔 ▶ < 흔 ▶ < 흔 ▶ 돌| = ∽ < ೕ

XRP

Rigid Body Dynamics Contact Control strategy Demo

Why is walking a hard problem?

Industrial Robot vs. Biped

XRP

Rigid Body Dynamics Contact Control strategy Demo

Industrial Robot vs. Biped

Main difference

- Industrial Robot: Base bolted to ground
- Biped: stance leg only kept in place by friction
- Industrial Robot: one actuator per degree of freedom
- "Any" trajectory can be followed
- Biped: reaction forces on stance foot not directly controllable

▲ 王 ▶ < 王 ■ ● ○ ○ ○ ○

- Intrinsic dynamics matter
- No longer "any trajectory possible"

Rigid Body Dynamics Contact Control strategy Demo

◆□ > ◆□ > ◆三 > ◆三 > 三日 のへで

Demo: trajectory tracking is not enough!

Demo time!

Rigid Body Dynamics Contact Control strategy Demo

Contact forces: normal component

- Contact is a complicated microscopic phenomenon
- Contacts are (usually) non-sticky!
- Normal component of contact force: $F_c^{(n)} \ge 0$.

Rigid Body Dynamics Contact Control strategy Demo

글 🕨 🔸 글 🕨

Multiple contacts: the center of pressure

Consider multiple contact points x_i:

Define center of pressure as weighted average of contact points.

Rigid Body Dynamics Contact Control strategy Demo

Center of pressure (2)

CoP is average of contact points, weighted by contribution to normal component of contact force.

$$x_c = \frac{\sum_i x_i F_i^{(n)}}{\sum_i F_i^{(n)}}$$

Rewrite as:

$$x_c = \sum_i \alpha_i x_i , \ \alpha_i = \frac{F_i^{(n)}}{\sum_i F_i^{(n)}}$$

$$F_i^{(n)} > 0$$
 implies $0 \le \alpha_i \le 1$.

(注) ((注)) (

< 🗇 🕨

1 = 9 Q Q

Rigid Body Dynamics Contact Control strategy Demo

Center of pressure (3)

CoP seems to depend to microscopic details of contact \Rightarrow useless. However:

Sum all contact forces into total contact force and torque:

$$F = \sum_{i} F_{i}, \ T = \sum_{i} x_{i} \times F_{i}$$

Let n be the normal vector and coordinate origin in the contact plane. Then:

$$x_c = \frac{n \times I}{n \cdot F}$$

Rigid Body Dynamics Contact Control strategy Demo

★ E ▶ ★ E ▶ E E ● ○ ○ ○

Center of pressure (4)

- $\bullet\,$ Stance foot stationary $\Rightarrow\,$ contact forces compensate reaction from robot body
- Necessary conditions for real contact:
 - $F^{(n)} \ge 0$
 - *x_c* inside foot (convex hull for multiple feet)
- Sufficient for no-slip (Coulomb friction with $\mu
 ightarrow \infty$)
- Usually sufficient in practice

Rigid Body Dynamics Contact Control strategy Demo

Naive walking revisited

◆□> ◆□> ◆三> ◆三> ●目目 のへの

Rigid Body Dynamics Contact Control strategy Demo

▲ E ▶ ▲ E ▶ E E ● 9 Q Q

Control strategy

- Focus on contact forces
- Imagine: robot floating in space
- Linear and angular momentum conserved
- Conservation of linear momentum implies that center-of-mass trajectory cannot be influenced
- Robot on ground: Total linear and angular momentum can only be changed through contact forces
- Linear/angular momentum change ⇔ Contact forces

Rigid Body Dynamics Contact Control strategy Demo

Control strategy (2)

- Simplifying restriction: $L = \dot{L} = 0$ (total angular momentum zero)
- Contact forces fully determined from center of mass trajectory (joint angle trajectories do not matter!)
- Specify 6 contact forces via $\dot{L} = 0$ (3 eqn.), center of pressure (2 eqn.), $z_{\rm com}(t)$ (1 eqn.)
- Solve boundary value problem to find center of mass trajectory

• Idea from PhD thesis of T. Buschmann (TU Munich)

Rigid Body Dynamics Contact Control strategy Demo

Control strategy (3): Demo

XRP

1 = 990

Rigid Body Dynamics Control strategy Demo

Control strategy (4)

- We have 3 boundary conditions x_0 , \dot{x}_0 , x_f for a second order differential equation
- Add CoP trajectory modification to get remaining DoF
- Modification may violate CoP constraint
- Sometimes, you need to take a sidestep
- ... but usually, this approach works.

∃ ► ★ ∃ ► ∃ = • • • • •

Rigid Body Dynamics Contact Control strategy Demo

∃ ► ★ Ξ ► Ξ = • • • • •

Control strategy (5)

- Use inverse dynamics to control contact forces and track center of gravity trajectory
- Two cases:
 - One leg on the ground: control contact force plus swing leg acceleration
 - Two legs on the ground: control two contact forces

Each gives 12 equations for 12 joint space degrees of freedom.

Rigid Body Dynamics Contact Control strategy Demo

◆□> ◆□> ◆三> ◆三> ●目目 のへの

Demo #1: Walking on flat ground

Demo time!

Rigid Body Dynamics Contact Control strategy Demo

◆□> ◆□> ◆三> ◆三> ●目目 のへの

Demo #2: Unmodelled uneven terrain

Demo time!

Rigid Body Dynamics Contact Control strategy Demo

◆□> ◆□> ◆三> ◆三> ●目目 のへの

Demo #3: Modelled uneven terrain

Demo time!

Felix Schneider, Norbert Braun XRP

Rigid Body Dynamics Contact Control strategy Demo

Curves

XRP

Rigid Body Dynamics Contact Control strategy Demo

Control strategy: summary

Control strategy based on contact force management

- + Reasonable performance
- o Foot positions fixed in advance
 - + Can be used by higher-level controller, e.g. for climbing stairs

▲母> ▲目> ▲目> 目目 のQQ

- Limits options for push recovery (cannot take sidesteps)
- L = 0 causes excessive torso motion and forces unnatural walking style

Rigid Body Dynamics Contact Control strategy Demo

XRP dynamics toolkit

- General-purpose physics engine: forward dynamics only
- Treat physics as black box: inefficient
- Dynamics algorithms, specialized for our robot model
- Analytical inverse kinematics for 6-DoF legs
- Forward dynamics
- Inverse dynamics
- Contact force prediction/management
- Open source, alpha release soon

Reference: R. Featherstone: Rigid Body Dynamics Algorithms (Springer 2008)

Rigid Body Dynamics Contact Control strategy Demo

▲ 王 ▶ < 王 ■ ● ○ ○ ○ ○

Long term prospect: optimization

- Hand-crafted controllers OK for simple walking
- Approach breaks down for complicated movements
- Design movements by large-scale numerical optimization
- Good way to use (still) increasing computational power
- Many interesting results in simulation (SIGGRAPH)
- Few results on physical robots: Why?

BLDC motors Sensors Gears and Actuators Motor Testbed Other Projects

Actuation requirements

Ballpark estimates:

- $\bullet\,$ Peak joint torque: $\sim\,100\,$ Nm
- Peak velocity: \sim 20 rad/s
- Peak power: \sim 250W (per DoF)

Mainstream option: BLDC motor

BLDC motors

Gears and Actuators Motor Testhed **Other Projects**

Motor

- Cheap 30\$ 2kW BLDC RC Motor
- Weight: ~ 500 g
- Slightly overpowered but has only 270KV
- \rightarrow 849 rad/s @ max. voltage
- Torque: 3.15 Nm @ max. current (calculated)

(日) (部) (臣) (臣) [王]

= 200

 \Rightarrow Required gear reduction ratio: \sim 1:50

BLDC motors

Gears and Actuators Motor Testhed **Other Projects**

BLDC controller

R/C BLDC controllers not intended for servo applications.

Own BLDC controller features:

- Encoder based
- Space vector modulation (3 phase AC phase-locked to motor rotation)
- Communication via RS485

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 つ Q @

BLDC motors

Sensors Gears and Actuators Motor Testbed Other Projects

BLDC: power stage

- Re-use power stage from 120A R/C BLDC controller
- Add 2 hall effect current sensors (ACS759)

◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 三 つ Q @

BLDC motors

Sensors Gears and Actuators Motor Testbed Other Projects

BLDC: results

position control (PID): step response

XRP

BLDC motors Sensors Gears and Actuators Motor Testbed Other Projects

ミト ▲ ヨト 三日 つへの

Rotation Sensors

Austria Microsystems AS504x/AS5311

- Magnetic hall effect sensors
- AS504x: 12 bit (4096 steps/rev) absolute
- AS5311: 128 pole ring, 10/12 bit interpolation
- Combine both for 17 bit (0.003°) absolute sensor
- About 10\$/sensor, 5\$/magnet
- Quadrature output

Problems:

- Nonlinearity?
- Sampling
BLDC motors Sensors Gears and Actuators Motor Testbed Other Projects

(目) ▲目 ▲目 ◆ ● ● ●

Gear Requirements

Ballpark estimates:

- Peak joint torque in order of 100 Nm
- Motor torque \sim 2 Nm
- Needed reduction ${\sim}1{:}50$

Options left:

- Gearing: Harmonic Drives, Planetary Gears
- Linear actuators: Ball screws, Planetary Roller Screws

BLDC motors Sensors Gears and Actuators Motor Testbed Other Projects

Comparsion

	Planetary Gear	Harmonic Drive
Speed	-	+
Efficiency	3% loss per stage	87%
Backlash	-	++
Costs	+	
Weight	-	++

BLDC motors Gears and Actuators Motor Testbed **Other Projects**

Motor Testbed

BLDC motors Sensors Gears and Actuators Motor Testbed Other Projects

Motor Testbed

- Static load: up to 100Nm
- 2 Ports for axial and linear actuators
- Destructive video material will be on our blog

BLDC motors Sensors Gears and Actuators Motor Testbed Other Projects

TUlip

- Humanoid robot, realized at Eindhoven/Delft/Twente university
- 120cm, 15kg
- Uses *series elastic actuation* (resulting bandwidth: 5-10 Hz)
- Brushed motors (Maxon RE30, 60W)
- Planetary gears (Maxon GP32)
- Predecessor named Flame

BLDC motors Sensors Gears and Actuators Motor Testbed Other Projects

TUlip: Kinematic concept

- 6 DoFs per leg: 3 hip, 1 knee, 2 ankle
- Hip Joint has 2 axis in 1 plane
- Third axis is in the torso
- Ankle roll axis is passive (spring)

BLDC motors Sensors Gears and Actuators Motor Testbed Other Projects

Video #1: Flame Demo Video

Video time!

Source: www.youtube.com/watch?v=7JU_zQkVOil

BLDC motors Sensors Gears and Actuators Motor Testbed Other Projects

- Humanoid robot, realized at TU Munich
- 180cm, 55kg
- 25 DoF total, 7 DoFs per leg
- Predecessor named Johnny Walker

イロト イヨト イヨト イヨト

BLDC motors Sensors Gears and Actuators Motor Testbed Other Projects

Lola: Actuation concept

- Brushless motors (PMSM)
- Harmonic Drives (hip joint, toe joint)
- Planetary Roller Screws used as linear actuator (knee, ankles)

BLDC motors Sensors Gears and Actuators Motor Testbed Other Projects

Lola: Kinematic concept

- 7 DoFs per Leg
- Comparable to TUlip
- Additional toe joint
- All joints are active
- $\bullet\,$ Hip z axis is tilted against xy plane

BLDC motors Sensors Gears and Actuators Motor Testbed Other Projects

Video #2: Lola Demo Video

Video time!

Source: www.youtube.com/watch?v=P4Y41Ago3cg

Camera system

∃ ► ★ ∃ ► ∃ = • • • • •

Camera system

- Scientific camera based on Apertus project
- CMOSIS CMV2000 sensor
- Global Shutter
- 2k resolution, up to 340fps, up to 12bit
- All design files: http://github.com/xrpbot/cmv_2000_hardware

ミ▶ ▲ ミ▶ ミヨヨ わえの

Current status/Outlook

- Preparatory phase: simulation, study exisiting designs
- Workshop mostly set up: milling machine (Deckel FP2), small CNC lathe, electronics
- Biggest challenge: actuation concept
- Ready to start construction after gear question is solved

Thank you!

http://xrpbot.org

... or meet us at C4 assembly (Chaos West)!